ESCRT-mediated vesicle concatenation in plant endosomes
نویسندگان
چکیده
Ubiquitinated plasma membrane proteins (cargo) are delivered to endosomes and sorted by endosomal sorting complex required for transport (ESCRT) machinery into endosome intralumenal vesicles (ILVs) for degradation. In contrast to the current model that postulates that ILVs form individually from inward budding of the endosomal limiting membrane, plant ILVs form as networks of concatenated vesicle buds by a novel vesiculation mechanism. We ran computational simulations based on experimentally derived diffusion coefficients of an ESCRT cargo protein and electron tomograms of Arabidopsis thaliana endosomes to measure cargo escape from budding ILVs. We found that 50% of the ESCRT cargo would escape from a single budding profile in 5-20 ms and from three concatenated ILVs in 80-200 ms. These short cargo escape times predict the need for strong diffusion barriers in ILVs. Consistent with a potential role as a diffusion barrier, we find that the ESCRT-III protein SNF7 remains associated with ILVs and is delivered to the vacuole for degradation.
منابع مشابه
Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes
The sorting of transmembrane cargo proteins into the lumenal vesicles of multivesicular bodies (MVBs) depends on the recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomal membranes. The subsequent dissociation of ESCRT complexes from endosomes requires Vps4, a member of the AAA family of adenosine triphosphatases. We show that Did2 directs...
متن کاملRegulators of Vps4 ATPase Activity at Endosomes Differentially Influence the Size and Rate of Formation of Intralumenal Vesicles
Recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomes regulates selective inclusion of transmembrane proteins into the lumenal vesicles of multivesicular bodies (MVBs). ESCRT-0, -I, and -II bind directly to ubiquitinated transmembrane cargoes of the MVB pathway, whereas polymerization of ESCRT-III at endosomes is thought to bend the membra...
متن کاملCoordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation
Five endosomal sorting complexes required for transport (ESCRTs) mediate the degradation of ubiquitinated membrane proteins via multivesicular bodies (MVBs) in lysosomes. ESCRT-0, -I, and -II interact with cargo on endosomes. ESCRT-II also initiates the assembly of a ringlike ESCRT-III filament consisting of Vps20, Snf7, Vps24, and Vps2. The AAA-adenosine triphosphatase Vps4 disassembles and re...
متن کاملESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation.
The sequential action of five distinct endosomal-sorting complex required for transport (ESCRT) complexes is required for the lysosomal downregulation of cell surface receptors through the multivesicular body (MVB) pathway. On endosomes, the assembly of ESCRT-III is a highly ordered process. We show that the length of ESCRT-III (Snf7) oligomers controls the size of MVB vesicles and addresses ho...
متن کاملThe role of ESCRT proteins in attenuation of cell signalling.
The ESCRT (endosomal sorting complex required for transport) machinery consists of four protein complexes that mediate sorting of ubiquitinated membrane proteins into the intraluminal vesicles of multivesicular endosomes, thereby targeting them for degradation in lysosomes. In the present paper, we review how ESCRT-mediated receptor down-regulation affects signalling downstream of Notch and gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 216 شماره
صفحات -
تاریخ انتشار 2017